(一) Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
- 在每一格只能往右或者往下
- 如果能对于任意一点A(x,y),能够找到从(0,0)到A的最小路径值,那么当x=m-1,y=n-1时满足题目要求
- 第一步:找到第一行第一列除开(0,0)之外的最小路径值
- 第二步:遍历右下角的矩阵(除开第一行和第一列),每一个点的最小值等于该点值+左边或上边的最小值
- 时间复杂度为O(mn),空间复杂度O(1)(因为改变原有的矩阵,不需要额外空间)
package DynamicProgramming.MinimumPathSum;
public class Solution {
public static int minPathSum(int[][] grid) {
int m = grid.length; //矩阵行数
int n = grid[0].length; //矩阵列数
for(int i=1; i < n; i++){
grid[0][i] += grid[0][i-1];
}
for(int j=1; j < m; j++){
grid[j][0] += grid[j-1][0];
}
for(int i=1; i < m; i++){
for(int j=1; j < n; j++){
grid[i][j] += min(grid[i-1][j],grid[i][j-1]);
}
}
return grid[m-1][n-1];
}
public static int min(int a, int b){
if(a < b)
return a;
return b;
}
}